

Week 10

Amorphous structures I: Polymers

Exercise 1

Answer these questions by true or false:

1. Only cross-linked polymers exhibit elasticity, and thus a rubber plateau
True/false
2. Thermoplastics which are in glass state are usually transparent
True/false
3. The lower melt temperature of polymers compared to metals is due to the covalent bonds in polymers which are weaker compared to metallic bonds
True/false
4. A unit cell of a polymer crystal is as big as the polymer chain
True/false

Exercise 2:

Select the correct answer(s) (more than one answer can be correct)

1. Thermoplastic materials
 - a. Can easier be recycled than a thermoset material
 - b. Are very common packaging materials
 - c. Are always purely amorphous
 - d. Have permanent cross-links between the polymer chain
2. Polymers are...
 - a. Chain-like molecules where repeating units are covalently bound
 - b. Always synthetic materials
 - c. Often fully crystalline
 - d. Mostly organic molecules
3. The radius of a polymer coil is...
 - a. Larger in a poor solvent then in a good solvent
 - b. Larger in polymer melt than in a good solvent
 - c. Much smaller than the length of the polymer
 - d. Has a higher entropy than the stretched chain

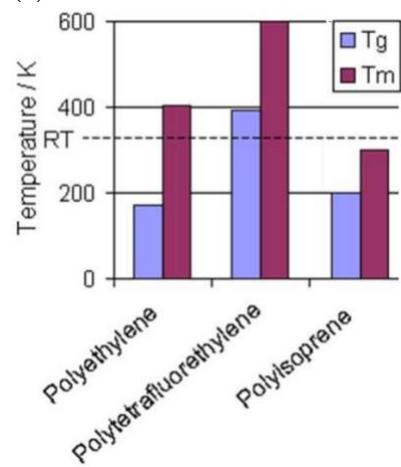
Exercise 3: Molecular weight and polydispersity

a) What is the polydispersity of poly(ethyleneoxide)

With the following distribution:

10% of the molecules have $N= 98$
20% of the molecules have $N= 99$
40% of the molecules have $N=100$
20% of the molecules have $N= 101$

10% of the molecules have $N= 102$


b) Is this considered polydisperse for a polymer?

Exercise 4: In water, poly(ethylene oxide) has a Kuhn length of 0.72 nm and a monomer length of 0.28nm.

What is the expected end to end distance of 20 kg/mol coil in a random walk configuration?

Exercise 5:

Make an educated (well-motivated) guess about which polymer will give which material properties at room temperature: (1) hard and brittle, (2) elastic (at least a little bit) and (3) viscoelastic.

